Drill sizes for tapping

To supplement the information on drill sizes for tapping discussed at Eddie's talk, members might find the following tables useful. Although many people manage with a single given tapping drill for each thread size, it is good practice to select a tapping drill that gives an appropriate percentage thread engagement for the material in question. Table 1 gives the ideal percentage thread engagement for different materials and Table 2 offers a range of tapping drills for different percentages of BSF thread engagement.

Table 1 – Recommended thread engagement percentages for tapping different materials

Material	Percentage Engagement
Copper	65 to 70
Aluminium Alloys	Around 70
Gunmetal	Around 75
Rolled Brass	70 to 80
Cast Brass	80 to 85
Mild Steel	75 to 80
Cast Iron	Around 85

Table 2 – BSF Tapping and clearance data. Please note that quoted drill sizes are a mix of imperial, metric and number. Equivalent sizes can be found in numerous sources including the well-known Zeus Tables

BSF Thread		Clearance		Tapping		
Overall Diameter	TPI – Threads	Thread Depth	Clearing Drill	Clearance on diameter	Tapping Drill	% Engagement
(1n)	per inch	(in)		(Thou)	Dia	(E)
(11)		(11)		(Thou)		
			No 12	1.5	No 23	84
3/16	32	0.0200	No 11	3.5	5/32	78
0.1875					No 21	70
					No 20	66

	28	0.0228	5.6 mm	1.7	No 15	85
7/32			No 2	2.2	No 14	80
0.2188			5.7 mm	5.6	No 13	74
					No 12	65
		0.0246	6.4 mm	2	No 4	83
1/4	26		6.5	6	No 3	75
0.2500			F	7	5.4 mm	70
					No 2	59
			7.2 mm	2.3	С	80
9/32	26	0.0246	L	8.8	6.2 mm	75
0.2812					6.3	67
					1/4	63
			8 mm	2.5	G	88
5/16	22	0.0291	0	3.5	17/64	80
0.3125					6.9	70
					7 mm	63
			V	2.0	0	92
3/8	20	0.0320	9.7 mm	6.9	Р	81
0.3750					8.3 mm	75
					8.4 mm	69
		0.0356	11.2	3.4	3/8	88
7/16	18		11.3	7.4	V	85
0.4375					9.7 mm	78
					9.8 mm	73
1/2		0.0400	12.75	2	11 mm	84
0.500	16		12.8	3.9	7/16	78
			12.9	7.9	11.2	74
					11.4	64

Notes:

1 – Thread depth (d) = 0.64/TPI 2 – Core diameter = OD – (1.28 x Pitch)

3 – Pitch = 1/TPI (2 x d x E/100)

I can include similar tables for Whitworth, BA and other thread forms in the next Newsletter if readers find these data of interest Ed